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Machine Learning for Networking:
Workflow, Advances and Opportunities



Overview

workflow steps to use ML in networking

summarize latest workssurvey

from problem formulation to deployment

opportunities solve intractable old questions
stimulate new applications

design principles

benefits



Networks are hard to

manage

optimize

secure

and not necessarily improving

Developing algorithms and systems to deal with 
complex problems is a challenging task

ML is good in that
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“AI is capable of vastly more than anyone on earth can even imagine

And its rate of improvement is exponential…”


— Elon Musk, CEO OpenAI




Source: @ML_Hipster

NIPS Attendance



AI papers on arxiv

Source: Andrej Karpathy
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Log scale!

Source: OpenAI 



Algorithmic innovation, much more data, and funding  

Log scale!

AlexNet to AlphaGo Zero:  

 A 300.000x Increase in Compute

Source: OpenAI 



Machine learning refresher

ML aims to construct algorithms and models  
that can learn to make decisions directly from data
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reinforcement agent learns the best action series

unlabeled data

labeled data

to maximize a cumulative reward

interacting with the environment
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Supervised learning
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1000s CHF
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 Housing price prediction

Learning algorithm 2 (quadratic function)



Supervised learning

supervised ‘right answers’ (labels) given

predict continuous valued outputregression

 for the training dataset

(price)

 Housing price prediction
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Supervised learning

tumor size

 Breast cancer (malignant, benign)

age

Learning algorithm 1 (linear function)



Supervised learning

supervised ‘right answers’ (labels) given

the output is a discrete valueclassification

 for the training dataset

large number of features (SVM)

 Breast cancer (malignant, benign)
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unsupervised learning

Unsupervised learning



Here is a dataset. Can you find some structure?

Unsupervised learning

x2

x1
unsupervised learning



x2

x1

Unsupervised learning

Learning algorithm (clustering)

(e.g., k-means, SVD)

Here is a dataset. Can you find some structure?

unsupervised learning
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the agent selects actions to maximize future reward

observes state st

emits reward rt

receives reward rt

executes action at

receives action at

emits state st

Reinforcement learning (Agent and Environment)

RL in a nutshell:

At each step t, the agent:

The environment:

Example from DRL, David Silver (Google DeepMind)



Why is ML a good match?

classification intrusion detection

network schedulingdecision making

interaction with load changing patterns

and prediction performance prediction

parameter adaptation

network statecomplex
environments

ML is good in: Which is useful for:



Workflow



Step 1. Problem formulation

formulate and abstract the problemdefine and
classification problem

clustering problem

decision making

to help us decide: the best learning model

type of data required

Training is time consuming, 
so better make a good decision

amount of data required

classify



Step 2. Data collection

Gather a large amount of representative
 network data without bias

purpose training and evaluation

network, application level
type

support

traffic traces, logs

labels, feature extraction



Step 3. Data analysis

on the target performance

Pre-process and clean raw data

Example from pForest, Coralie Busse-Grawitz et. al.  

feature which parameters impact the most
engineering



Step 4. Model construction and validation

model selection

tune parameters
adapt model

size of the dataset

characteristics of scenario

training and tuning
lack of theoretical guidelines

problem category



shallow

deep

unsupervisedsupervised

clustering

association

stacked auto-encoders

deep belief networks

convolutional  
feed-forward 

deep neural networks

recurrent  
deep neural networks

fully-connected feed-forward 
deep neural networks

support  
vector  

machines

random 
forest naive 

bayes

k-nearest 
neighbour

shallow  
neural networks

hidden markov model

logistic 
regression

Step 4. Model construction and validation



Step 5. Model validation and deployment

analyze wrong samples to find errors
iterate multiple times!

check resource constraints

model validation test accuracy (over/under fitting)
increase data volume

reduce model complexity

deployment
accuracy vs. overhead
consider fault tolerance



Example 1. Next-generation firewall

We want to build an ML-based system to 
detect and mitigate DDoS attacks



Example 2. Next-generation routing

We want to build an ML-based system to 
predict failures and reroute traffic proactively


