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Machine Learning for Networking: Workflow, Advances and Opportunities

Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang

ABSTRACT

Recently, machine learning has been used
in every possible field to leverage its amazing
power. For a long time, the networking and dis-
tributed computing system is the key infrastruc-
ture to provide efficdent computational resources
for machine learning. Networking itself can also
benefit from this promising technology. This arti-
cle focuses on the application of MLN, which
can not only help solve the intractable old net-
work questions but also stimulate new network
applications. In this article, we summarize the
basic workflow to explain how to apply machine
learning technology in the networking domain.
Then we provide a selective survey of the lat-
est representative advances with explanations
of their design principles and benefits. These
advances are divided into several network design
objectives and the detaided information of how

tion or regression tasks from labeled data, while
USL algorithms focus on classifying the sample
sets into different groups (ie., clusters) with unla-
beled data. In RL algorithms, agents learn to find
the best action series to maximize the cumulat-
ed reward (Le., objective function) by interacting
with the environment. The latest breakthroughs,
including deep leaming (DL), transfer learning
and generative adversarial networks (GAN), also
provide potential research and application direc-
tions in an unimaginable fashion.

Dealing with complex problems is one of the
most important advantages of machine leaming.
For some tasks requiring classification, regression
and decsion making, machine learning may per-
form close to or even better than human beings.
Some examples are facial recognition and game
artificial intelligence. Since the network field
often sees complex problems that demand effi-
cient solutions, it is promsing to bring machine
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Developing algorithms and systems to deal with
complex problems is a challenging task

Networlks are hard to

manage
optimize

secure

and not necessarily improving

ML is good in that
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have made breakthroughs in:

Machine Learning Methods Applied to DNA Microarray
Data Can Improve the Diagnosis of Cancer

ABSTRACT

The morbidity rate of cancer victims varies greatly for sim-
ilar patients who receive similar treatments. It is hypoth-
esized that this variation can be explained by the genetic
heterogeneity of the disease. DNA Microarrays, which can
simultaneously measure the expression level of thousands
of different genes, have been successfully used to identify
such genetic differences. However, microarray data typically
has a large number of features and relatively few observa-
tions, meaning that conventional machine learning tools can
fail when applied to such data. We describe a novel proce-
dure called “nearest shrunken centroids™ that has success-
fully detected clinically relevant genetic differences in cancer
patients. This procedure has the potential to become a pow-
erful tool for diagnosing and treating cancer.

Keywords

Microarrays, shrunken centroids, classification

1. OVERVIEW

When a patient is diagnosed with cancer, various clinical
parameters are used to assess the risk of metastasis and
death in that patient. However, despite numerous advances
in the field, our ability to determine the risk of morbidity
is extremely limited. Tumors that appear indistinguishable
under the microscope may have drastically different effects
on the patient.

It has long been known that cancer is a genetic disease.
Thus, it is commonly believed that these differences in the
clinical outcome of cancer can be explained by differences
in the genetic profile of the tumor. Unfortunately, until
recently, our ability to directly observe the genetic makeup
of a tumor was extremely limited.

This is changing, however, with the advent of DNA microar-
rays. Microarrays can simultaneously measure the expres-
sion levels of thousands of genes in an organism. Thus, they
have the ability to detect differences between tumors at the
molecular level. This is illustrated in Figure 1. Under the
microscope, the two types of lymphoma appear to be identi-
cal. However, gene expression profiling reveals that the two
tumor types are actually distinct at the molecular level.
The ability to identify such subgroups has important impli-
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Figure 1: DNA Microarrays can identify differences between
tumors that are not detectable under a microscope. Us-
ing conventional microscopic analysis, the lymphoma cells in
groups A and B appear to be identical. Microarrays analysis
shows that different genes are active and inactive in these
two groups, indicating that they represent distinct disease

subtypes.

cations for the diagnosis and treatment of cancer. Suppose
one subtype of cancer is likely to metastasize whereas an-
other subtype is not. The patients who have a high risk of
metastasis would need to be treated aggressively, whereas
the other patients could be given a less invasive treatment
(or no treatment at all). If there is no way to distinguish
between these subtypes, all patients would need to be given
the aggressive treatment. However, this is highly undesir-
able, because current treatments for cancer, such as surgery
or chemotherapy, have extremely severe side effects. (In fact,
some cancer patients have died as a result of chemotherapy.)
If we could successfully identify the patients with a high risk
of metastasis and death, we could give them the appropriate
treatment while sparing other patients from the noxious side
effects that such treatment would entail.

This is essentially a classification problem. Given a number
of features (gene expression levels), we wish to predict which
type of cancer is present in a patient. Many machine learn-
ing procedures have been developed for this type of problem.
(See, for example, [4; 6].)

Unfortunately, these existing machine learning procedures
cannot be directly applied to microarray data. The number
of features is extremely large compared to the number of
observations, causing most machine learning procedures to
fail. Moreover, it is important to identify to identify which
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Recently ML techniques have made breakthroughs in:

SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS

Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton

Department of Computer Science, University of Toronto

ABSTRACT

Recurrent neural networks (RNNs) are a powerful model for
sequential data. End-to-end training methods such as Connec-
tionist Temporal Classification make it possible to train RNNs
for sequence labelling problems where the input-output align-
ment is unknown. The combination of these methods with
the Long Short-term Memory RNN architecture has proved
particularly fruitful. delivering state-of-the-art results in cur-
sive handwriting recognition. However RNN performance in
speech recognition has so far been disappointing. with better
results returmed by deep feedforward networks. This paper in-
vestigates deep recurrent neural networks, which combine the
multiple levels of representation that have proved so effective
in deep networks with the flexible use of long range context
that empowers RNNs. When trained end-to-end with suit-
able regularisation, we find that deep Long Short-term Mem-
ory RNNs achieve a test set error of 17.7% on the TIMIT
phoneme recognition benchmark, which to our knowledge is
the best recorded score.

Index Terms— recurrent neural networks, deep neural
networks, speech recognition

1. INTRODUCTION

Neural networks have a long history in speech recognition,
usually in combination with hidden Markov models [1. 2].
They have gained attention in recent years with the dramatic
improvements in acoustic modelling yielded by deep feed-
forward networks [3. 4]. Given that speech is an inherently
dynamic process, it seems natural to consider recurrent neu-
ral networks (RNNs) as an altenative model. HMM-RNN
systems [5] have also seen a recent revival [6, 7). but do not
currently perform as well as deep networks.

Instead of combining RNNs with HMMs, it is possible
to train RNNs ‘end-to-end’ for speech recognition (8, 9. 10].
This approach exploits the larger state-space and richer dy-
namics of RNNs compared to HMMs, and avoids the prob-
lem of using potentially incorrect alignments as training tar-
gets. The combination of Long Short-term Memory [11]. an
RNN architecture with an improved memory, with end-to-end
training has proved especially effective for cursive handwrit-
ing recognition [12, 13). However it has so far made little
impact on speech recognition.

RNN s are inherently deep in time, since their hidden state
is a function of all previous hidden states. The question that
inspired this paper was whether RNNs could also benefit from
depth in space: that is from stacking multiple recurrent hid-
den layers on top of each other, just as feedforward layers are
stacked in conventional deep networks. To answer this ques-
tion we introduce deep Long Short-term Memory RNNs and
assess their potential for speech recognition. We also present
an enhancement to a recently introduced end-to-end leaming
method that jointly trains two separate RNN's as acoustic and
linguistic models [10]. Sections 2 and 3 describe the network
architectures and training methods, Section 4 provides exper-
imental results and concluding remarks are given in Section 5.

2. RECURRENT NEURAL NETWORKS

Given an input sequence x = (1y..... rr).astandard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (hy..... hy) and output vector sequence y =
(y1.....yr) by iterating the following equations from ¢ = 1
toT:

he = H(Wopxe + Wipheoy + by) (1))

w = Wy,he +b, 2)
where the W terms denote weight matrices (e.g. W, is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. by, is hidden bias vector) and 7 is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11]). which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [14]
H is implemented by the following composite function:

ie= 0 (Weze + Withey + Wy + b)) 3)
fo= o (Wayze + Wighey + Wopey +by) (@)
= ficey +igtanh (W xo+ Wi hey +b,.) (5)
o =0 (Weoxe + Wihey + W+ b,) 6)
h¢ = o¢ tanh(ce) 7

where o is the logistic sigmoid function, and 1. f. 0 and ¢
are respectively the input gate, forget gate, output gate and

978-1-4799-0356-6/13/531.00 ©2013 IEEE 6645 ICASSP 2013




Recently ML techniques have made breakthroughs in:

One-Shot Video Object Segmentation
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Figure 1. Example result of our technique: The segmentation of the first frame (red) is used to lkeamn the model of the specific object 1o

track. which is segmented in the rest of the frames independently (green). One every 20 frames shown of 90 in total.

Abstract

This paper tackles the task of semi-supervised video ob-
ject segmentation, i.e.. the separation of an object from the
background in a video, given the mask of the first frame.
We present One-Shot Video Object Segmentation (OSVOS).
based on a fully-comvolutional neural network architecture
that is able to successively transfer generic semantic infor-
mation, learned on ImageNet, to the task of foreground seg-
mentation, and finally to learning the appearance of a sin-
gle annotated object of the test sequence (hence one-shot).
Although all frames are processed independently, the re-
sults are temporally coherent and stable. We perform ex-
periments on two d video segmentation databases,
which show that OSVOS is fast and improves the state of the
art by a significant margin (79.8% vs 68.0%).

1. Introduction
From Pre-Trained Networks...

Convolutional Neural Networks (CNNs) are revolution-
izing many fields of computer vision. For instance. they
have dramatically boosted the performance for problems

like image classification [24, 47, 19] and object detec-
tion [ 15, 14, 26]. Image segmentation has also been taken
over by CNNs recently [29, 23,51, 3, 4], with deep architec-

tures pre-trained on the weakly related task of image classi-
fication on ImageNet [4-]. One of the major downsides of
deep network approaches is their hunger for training data.
Yet. with various pre-trained network architectures one may
ask how much training data do we really need for the spe-
cific problem at hand? This paper investigates segmenting
an object along an entire video. when we only have one sin-
gle labeled training example. e.g. the first frame.

*Frst two athors contributed equally

..to One-Shot Video Object Segmentation

This paper presents One-Shot Video Object Segmenta-
tion (OSVOS). a CNN architecture to tackle the problem
of semi-supervised video object segmentation. that is. the
classification of all pixels of a video sequence into back-
ground and foreground. given the manual annotation of one
(or more) of its frames. Figure 1 shows an example result
of OSVOS. where the input is the segmentation of the first
frame (in red). and the output is the mask of the object in
the 90 frames of the sequence (in green).

The first contribution of the paper is to adapt the CNN to
a particular object instance given a single annotated image
(hence one-shot). To do so, we adapt a CNN pre-trained on
image recognition [+!] to video object segmentation. This
is achieved by training it on a set of videos with manually
segmented objects. Finally. it is fine-tuned ar rest time on a
specific object that is manually segmented in a single frame.
Figure 2 shows the overview of the method. Our proposal
tallies with the observation that leveraging these different
levels of information to perform object segmentation would
stand to reason: from generic semantic information of a
large amount of categories. passing through the knowledge
of the usual shapes of objects. down to the specific proper-
ties of a particular object we are interested in segmenting.

The second contribution of this paperis that OSVOS pro-
cesses each frame of a video independently. obtaining tem-
poral consistency as a by-product rather than as the result of
an explicitly imposed. expensive constraint. In other words.
we cast video object segmentation as a per-frame segmen-
tation problem given the maodel of the object from one (or
various) manually-segmented frames. This stands in con-
trast to the dominant approach where temporal consistency
plays the central role. assuming that objects do not change
too much between one frame and the next. Such meth-
ods adapt their single-frame models smoothly throughout
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Reaching super-human skills

1997 IBM deep blue beats the chess
world champion Kasparov

2015 AlphaGo beats the first
professional Go player

2016 AlphaGo beats 9-dan Lee Sedol
in a five-game match

2017 AlphaMaster beats Ke Jie, the
Go world champion

2018 AlphaZero crashes AlphaMaster
100-0 (self-play)

2018 AlphaZero in Chess, Go, Shogi

DeepMind stops AlphaZero, concluding that
it beats at any “perfect information” game




StarCraft is a deep, complicated war strategy
game. Google’s AlphaStar Al crushed it.

DeepMind has conquered chess and Go and moved on to complex
real-time games. Now it's beating pro gamers 10-1.

By Kelsey Piper | Updated Jan 24, 2019, 7:04pm EST




OpenAl Bot Crushes Dota 2
Champions And This is Just the

Beginning

Machines, like humans, learn best when they're beaten
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“Al is capable of vastly more than anyone on earth can even imagine
And its rate of improvement is exponential...”

— Elon Musk, CEO OpenAl
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Al papers on arxiv
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Machine learning refresher

ML aims to construct algorithms and models
that can learn to make decisions directly from data

supervised classification or regression
labeled data
unsupervised clustering samples into groups

unlabeled data

reinforcement agent learns the best action series
to maximize a cumulative reward

interacting with the environment
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Supervised learning
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Supervised learning

Housing price prediction

price in 400 —+ Learning algorithm 2 (quadratic function)
1000s CHF
300
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5(I)0 ‘ 10I00 15I00 20100 21"300
size in feet?
750
supervised ‘right answers’ (labels) given

for the training dataset

regression predict continuous valued output
(price)
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Supervised learning

Breast cancer (malignant, benign)

Learning algorithm 1 (linear function)
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tumor size




Supervised learning

Breast cancer (malignant, benign)
age 4
tumor size
supervised ‘right answers’ (labels) given
for the training dataset
classification the output is a discrete value

large number of features (SVM)
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Unsupervised learning

% X X
W X XX

X1

supervised learning

‘right answers’ (labels) given

for the training dataset

X2 4

« X X
X X
X
X X
X X
Xxéxx
X
X x

unsupervised learning

data is not labeled

X1



Unsupervised learning

2 X %%
X
X X
X X
><><>:<>< X
X
x x %

unsupervised learning

X1



Unsupervised learning
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Unsupervised learning

Learning algorithm (clustering)
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Reinforcement learning (Agent and Environment)

At each step t, the agent:

observes state st state 40 L[S Q action

- \

¥4 v o t”/
receives reward rt t A\ g F a |
Iy

executes action at \./'
reward |
\

The environment:

receives action at

emits state st

emits reward rt

RL in a nutshell:

the agent selects actions to maximize future reward



Why is ML a good match?

classification

and prediction

decision making

interaction with

complex

environments

intrusion detection

performance prediction

network scheduling

parameter adaptation

load changing patterns
network state



Workflow

Step 1 Step 2 Step 3 Step 4
Problem formulation Data collection Data analysis Model construction
(prediction, regression, (e.g., traffic traces, (preprocessing, feature (offline training and
clustering,decision making) pen‘ormance logs, etc.) extraction) tuning)
Step 6 Step 5
" Deploymentand ) [/ Model validation "\
inference (cross validation,

(tradeoff on speed, Yes Meet error analysis)
memory, stability and ~ (&— requirements?
_ accuracy of inference) v, k /




Step 1. Problem formulation

define and formulate and abstract the problem
classify classification problem
clustering problem

decision making

to help us decide: the best learning model

type of data required

amount of data required

Training is time consuming,
so better make a good decision



Step 2. Data collection

Gather a large amount of representative

network data without bias

purpose training and evaluation

type traffic traces, logs

network, application level

support labels, feature extraction



Step 3. Data analysis

Pre-process and clean raw data

feature which parameters impact the most
engineering on the target performance
Features Random forest model Action based on

label & certainty

. AE) ~O-a 3
g =) [N . N &
é I——J\V><‘ [—v> O< “O:: [—v> — drop(Q) [::>§_
——— C :;O(Q ' —» fwd(2) =
v a
S——

Example from pForest, Coralie Busse-Grawitz et. al.



Step 4. Model construction and validation

model selection

tune parameters

adapt model

problem category

size of the dataset

characteristics of scenario

training and tuning

lack of theoretical guidelines



Step 4. Model construction and validation

support

. random
mve;_or forest naive
achines bayes
logistic
regression shallow
neural networks
. k-nearest
hidden markov model .

neighbour

supervised

shallow

clustering

association

unsupervised

convolutional

fully-connected feed-forward feed-forward

deep neural networks

recurrent
deep neural networks

deep neural networks

stacked auto-encoders

deep belief networks

deep



Step 5. Model validation and deployment

model validation

deployment

test accuracy (over/under fitting)
increase data volume

reduce model complexity

analyze wrong samples to find errors

iterate multiple times!

check resource constraints

accuracy vs. overhead

consider fault tolerance



Example 1. Next-generation firewall

We want to build an ML-based system to
detect and mitigate DDoS attacks

Step 1 Step 2 Step 3 Step 4
Problem formulation Data collection Data analysis Model construction
(prediction, regression, (e.g., traffic traces, (preprocessing, feature (offline training and
clustering,decision making) performance logs, etc.) extraction) tuning)
Step 6 Step 5
" Deploymentand | [/ Model validation "\
inference (cross validation,

(tradeoff on speed, Yes Meet error analysis)
memory, stability and |4 requirements?
_ accuracy of inference) y \ j




Example 2. Next-generation routing

We want to build an ML-based system to
predict failures and reroute traffic proactively

Step 1 Step 2 Step 3 Step 4
Problem formulation Data collection Data analysis Model construction
(prediction, regression, (e.g., traffic traces, (preprocessing, feature (offline training and
clustering,decision making) performance logs, etc.) extraction) tuning)
Step 6 Step 5
" Deploymentand | [/ Model validation "\
inference (cross validation,

(tradeoff on speed, Yes Meet error analysis)
memory, stability and |4 requirements?
_ accuracy of inference) y \ j




